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a b s t r a c t 

Image saliency detection has been widely explored in recent decades, but computational modeling of vi- 

sual attention for video sequences is limited due to complicated temporal saliency extraction and fusion 

of spatial and temporal saliency. Inspired by Gestalt theory, we introduce a novel spatiotemporal saliency 

detection model in this study. First, we compute spatial and temporal saliency maps by low-level visual 

features. And then we merge these two saliency maps for spatiotemporal saliency prediction of video 

sequences. The spatial saliency map is calculated by extracting three kinds of features including color, 

luminance, and texture, while the temporal saliency map is computed by extracting motion features esti- 

mated from video sequences. A novel adaptive entropy-based uncertainty weighting method is designed 

to fuse spatial and temporal saliency maps to predict the final spatiotemporal saliency map by Gestalt 

theory. The Gestalt principle of similarity is used to estimate spatial uncertainty from spatial saliency, 

while temporal uncertainty is computed from temporal saliency by the Gestalt principle of common fate. 

Experimental results on three large-scale databases show that our method can predict visual saliency 

more accurately than the state-of-art spatiotemporal saliency detection algorithms. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Visual attention is a significant mechanism in the Human Vi-

ual System (HVS) and it has been widely investigated in research

reas of neuroscience and visual perception [1] . When we view a

isual scene, the visual attention mechanism filters out most irrel-

vant information and focuses on salient regions. Basically, visual

ttention can fall into two kinds of approaches: bottom-up and

op-down. The bottom-up approach, known as a stimulus-driven

echanism, usually predicts salient regions automatically based on

eature contrast from low-level features such as luminance, color,

nd texture in visual scenes, while top-down attention, also known

s a task-driven mechanism, is determined by specific prior knowl-

dge, such as tasks, expectations and current goals. 

By visual attention modeling, saliency regions can be extracted

rom visual scenes. Generally, the saliency of an image pixel is

efined as the probability for this pixel being looked at. Existing

aliency detection models can be divided into two types: eye fix-

tion prediction and salient object detection models. Human fixa-

ion prediction models aim to locate fixation regions where human

yes look at during scene viewing, while salient object detection
∗ Corresponding author. 
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odels aim to locate the whole salient objects in visual scenes. In

he past decade, there have been various kinds of saliency detec-

ion models explored due to their wide applications [2–9] . Itti et al.

roposed a computational model of visual saliency by multi-scale

ow-level features including color, luminance, and orientation [3] .

ollowing Itti’s work, a simple and biologically inspired model was

roposed using graph theory in the study [4] . Some psychological

tudies [10,11] show that the HVS deals with targets from multiple

cales. Inspired by these studies [10,11] , Yan et al. [12] designed

 hierarchical saliency prediction model to solve the problem of

alient object detection at a small scale. 

Besides these commonly used low-level features in saliency de-

ection due to the sensitivity of the HVS to them [13] , some new

eatures such as image boundaries have also been investigated

n saliency detection [14,15] . In [14] , the authors considered im-

ge boundaries as parts of background regions, which are seg-

ented out for saliency prediction by manifold ranking based on

raph theory. Based on the study [14] , Zhu et al. [15] designed

 method to compute a background prior called boundary con-

ectivity by estimating the degree of an image block connecting

n image boundary. The authors in [16] explored color histogram

eatures for saliency detection. Goferman et al. [17] introduced a

ontext-aware saliency prediction model, which claims that salient

bjects cannot exist without context information. Gopalakrishnan
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et al. [18] defined visual attention modeling as a labelling problem

based on graph theory by exploiting color and orientation entropy

features. Some other studies try to extract saliency information in

the frequency domain [19–22] . Hou et al. explored spectral resid-

ual features of an image for saliency prediction by converting the

input image into the frequency domain [19] . Guo et al. developed a

saliency prediction model by phase spectrum [23] . Schauerte et al.

used the quaternion Fourier spectrum for saliency prediction [24] .

Some superpixel-based saliency detection models have been de-

veloped for performance improvement of visual saliency detection

[25–30] . Recently, there have been some machine learning based

models built for visual saliency detection [31,32] . 

The image saliency detection models mentioned above only

need to extract spatial features, while video saliency detection

models have to exploit the complicated motion features in video

sequences. Traditional studies of video saliency detection try to de-

tect moving objects as salient regions in video sequences. In [33] ,

Sun et al. summarized unconstrained video sequences using salient

montages by finding “montageable moments”, which is adopted to

identify salient people and actions in video sequences. Some stud-

ies use background priors to locate salient regions in video se-

quences. Xi et al. [34] proposed a video saliency prediction model

based on spatial and temporal background priors. In the study [34] ,

superpixel-level boundary connectivity is computed as the spa-

tial background prior, while background homography is used to

estimate the temporal background prior. Le Meur et al. designed

a spatiotemporal saliency detection method based on perceptual

characteristics, including visual masking, perceptual decomposi-

tion, contrast sensitivity functions, and center-surround interac-

tions [35] . Some studies explore visual saliency detection based

on superpixel segmentation for video sequences [36–38] . Liu et al.

computed a superpixel-based spatiotemporal saliency method for

video sequences based on global contrast, spatial sparsity, and ob-

ject prior [36] . In that study [36] , superpixel-level spatial saliency

and temporal saliency are predicted based on spatial and tempo-

ral features, respectively. For generating pixel-level saliency results,

they adapted a saliency derivation approach to compute the fi-

nal spatiotemporal saliency for video sequences [36] . In [37] , the

authors predicted video saliency by two steps: first, it estimates

locations of saliency regions based on graph theory; second, it

refines saliency results on these locations to generate the final

saliency map [37] . In [39] , Leboran et al. developed a spatiotem-

poral saliency detection model by the assumption that perceptual

information is related to high-order statistical structures. 

Some studies try to explore effective fusion of spatial and tem-

poral saliency for saliency detection of video sequences. Lee et al.

extracted various kinds of features and fused those features for

video saliency prediction using a SVM model [40] . Kim et al.

adopted a random walk with restarting to detect spatial and tem-

poral saliency maps, and fuse these two saliency maps by a con-

stant distribution of the walker [41] . Based on feature integration

theory [42] , Le Meur et al. [43] combined achromatic, chromatic

and temporal saliency maps to predict video saliency. Mahadevan

et al. [44] calculated feature maps based on mechanisms of feature

perception, and combined these feature maps by modeling dynam-

ical textures. Chen et al. [45] computed video saliency in a batch-

wise way. The authors in [46] presented a video saliency detec-

tion approach based on an energy function and optical flow. The

proposed model includes three steps: first, locate salient regions

with optical flow gradient; second, improve saliency results with

local and global contrast information; finally, refine spatiotemporal

saliency with an energy function. 

Recently, some deep learning based models have been proposed

for saliency detection [47,48] . In [47] , the authors proposed two

deep learning based models for saliency detection of images in-

cluding DeepGaze II and ICF. DeepGaze II uses high-level features
rained on databases of object recognition, while ICF is designed

ased on low-level features (one luminance and two color). These

wo models predict saliency results by passing features to the

ame readout network. In [49] , the authors built a saliency de-

ection model by two modules: a network for temporal saliency

xtraction and a network for static saliency extraction. In [50] ,

uan et al. constructed a deep neural network based denser and

parse labeling framework for saliency detection. Kruthiventi et al.

xplored fully convolutional networks for saliency detection in

n end-to-end manner [48] . Wang et al. [51] proposed a video

aliency detection model by using a convolutional LSTM (Long

hort-Term Memory) architecture. In [52] , the authors designed a

aliency detection model based on a skip-layer network structure.

ecently, Wang et al. designed an salient object detection model

ased on deep neural network [53] by two subnetworks. 

As introduced above, traditional methods of video saliency de-

ection are designed by linearly combining spatial and temporal

aliency for spatiotemporal saliency prediction. However, the sim-

le linear combination method for spatial and temporal saliency

s not reasonable due to the differences between perception of

patial and temporal saliency in the HVS. To address this prob-

em, we propose an adaptive fusion method of spatial and tem-

oral saliency based on Gestalt theory [54,55] . The theory is intro-

uced in Section 2.1 . To summarize, the Gestalt theory of similarity

s adopted to estimate the spatial uncertainty, while the tempo-

al uncertainty is computed by the Gestalt theory of common fate.

ased on uncertainty weighting, we calculate the final spatiotem-

oral saliency by combining spatial and temporal saliency. Experi-

ental results show that the proposed model performs better than

he state-of-art video saliency detection algorithms on three public

vailable datasets. 

Please note, the proposed model is quite different from our

revious work [56] . In the proposed method, we calculate tem-

oral saliency uncertainty using the Gestalt theory of common

ate, while Fang [56] computed the temporal uncertainty based

n psychophysical experiments on motion perception [57] . The

ncertainty of temporal saliency by Fang [56] mainly detects local

exture information, and it fails to detect complicated motion

eatures in video frames. The reason for this failure might be that

he consideration of local contrast in Fang [56] would influence

he uncertainty weighting estimation of temporal saliency. Thus,

emporal saliency uncertainty predicted by the proposed method

s more robust than that in [56] . 

In the study [56] , spatial saliency uncertainty was computed

ased on the Gestalt theory of continuity and proximity. In the

roposed method, we calculate the spatial saliency uncertainty us-

ng the Gestalt theory of similarity. Furthermore, we propose a uni-

ed framework for saliency prediction in video sequences based on

wo laws of similarity and common fate in Gestalt theory. The un-

ertainty of temporal saliency is estimated by the law of common

ate in Gestalt theory, which is the first attempt in the research

ommunity. Experimental results in Section 3 also show that the

roposed method using Gestalt theory can predict salient regions

ore accurately than the study [56] . 

The detailed steps of the proposed model are shown as fol-

ows: (1) we compute spatial and temporal saliency as a func-

ion of spatial distance and feature difference between image re-

ions as introduced in Section 2.2 ; (2) we use this saliency mea-

ure to directly compute two probabilities for the weighting of

patial and temporal saliency inspired by Gestalt grouping as in-

roduced in Section 2.3 ; (3) lastly, we make an approximation

f these two probability distributions and then convert them to

n uncertainty and entropy measure in Section 2.4 ; (4) the fi-

al spatiotemporal saliency is computed by fusing spatial saliency

nd temporal saliency with uncertainty based weighting in

ection 2.5 . 
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Fig. 1. The framework of the proposed model. 
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Fig. 2. Similarity principle. 

Fig. 3. Common fate principle. 
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We have released the source code of this work on the following

ink http://sim.jxufe.cn/JDMKL/ymfang _ EN/GelstaltSaliency.zip 

. Proposed method 

We show the proposed framework in Fig. 1 , which includes two

ain steps: first, spatial and temporal saliency maps are predicted

y low-level features; second, the final spatiotemporal saliency is

redicted by combining the spatial and temporal saliency maps us-

ng uncertainty weighting. The Gestalt law of similarity is used to

stimate spatial uncertainty, while temporal uncertainty is com-

uted by Gestalt law of common fate. We detect salient objects

n each frame individually without considering the results in prior

rames for computation efficiency. 

.1. Gestalt theory 

Gestalt psychology aims to understand theories behind the

bility to obtain and maintain meaningful perceptions in an

pparently chaotic world. The main Gestalt principle is that the

erception forms a global whole with self-organizing tendencies.

he fundamental principle of Gestalt perception is the law of

rouping aka Prägnanz , including eight rules of grouping: prox-

mity, similarity, closure, symmetry, common fate, continuity,

ood gestalt, and past experience. In this work, we use the laws

f similarity and common fate to compute the uncertainty of

patial saliency and temporal saliency, respectively. The law of

imilarity claims that elements would tend to be perceived within

ne group if they are similar to each other. As shown in Fig. 2 ,

he HVS would instinctively divide the image content into three

roups owing to similar color properties. Besides color attributes,

ther visual properties can also be used in the Gestalt theory of

imilarity. The common fate principle states that elements tend to

e perceived as a group if they move in the same way. As shown

n Fig. 3 , if elements move in the same direction and speed, they

ould be perceived as a group, even across large distances. These

wo laws are used to estimate the uncertainty of spatial saliency

nd temporal saliency as follows: first, an image pixel that is more
imilar to the saliency center in an image is more likely to be a

alient pixel; second, an image pixel in the same way of moving

ith the saliency center is more likely to be a salient pixel. 

.2. Spatial and temporal saliency evaluation 

In the proposed method, three kinds of static features are ex-

racted for spatial saliency detection: luminance, color, and tex-

ure. First, we transform the color space from RGB to YCbCr. The

 channel contains luminance information, while the Cb and Cr

hannels represent color information for video sequences. Discrete

osine transform (DCT) of an image block is adopted to compute

eature contrast for video frames [20] , which would get DCT coeffi-

ients including DC coefficient and AC coefficients. These low-level

eatures are computed as follows: one luminance feature L is ex-

racted from the DC coefficient of the Y channel; two color features

 C b and C r ) are computed from the DC coefficients of the Cb and

r channels; one texture feature T is computed from the AC coef-

cients of the Y channel. In the study [58,59] , AC coefficients con-

ain high frequency information, which can be used to represent

exture features for video sequences. Based on these four features,

e calculate the feature map S 
f 
i 

for image block i as follows: 

 

f 
i 

= 

∑ 

j � = i 

1 

σs 

√ 

2 π
e −d 2 

i j 
/ 2 σ 2 

s D 

f 
i j 

, (1) 

here f ∈ { L, C b , C r , T }; σ s is the parameter of the Gaussian kernel

unction and used to balance local and global feature contrast; d ij 

enotes the Euclidean distance between image blocks i and j ; D 

f 
i j 

enotes the feature difference between image blocks i and j . For lu-

inance and color features, feature differences can be predicted by

he difference between DC coefficients of the corresponding blocks

s follows. 

 

f 
i j 

= 

| DC f 
i 

− DC f 
j 
| 

| DC f 
i 
| + | DC f 

j 
| (2) 

here f ∈ { L, C b , C r }; DC denotes DC coefficient. 

The texture feature difference can be computed using the dif-

erence between the AC coefficients of the corresponding blocks as

ollows. 

 

T 
i j = 

√ ∑ 

t (T t 
i 

− T t 
j 
) 2 ∑ 

t (T t 
i 

+ T t 
j 
) 

(3) 

http://sim.jxufe.cn/JDMKL/ymfang_EN/GelstaltSaliency.zip


4 Y. Fang, X. Zhang and F. Yuan et al. / Pattern Recognition 96 (2019) 106987 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

t  

f  

f  

s  

t  

c  

t  

W  

u

 

G  

i  

t  

m  

b  

t  

i  

p  

t  

c  

s  

t  

i  

p  

i

 

n  

r  

e  

o  

t  

i  

l

 

c  

p  

s  

b

c  

w  

Q

i  

r  

s  

t  

l  

t  

p  

p  

e  

b

R  

w  

h  

w  

p  

a

H  
where t denotes the index for AC coefficients in an image block. 

The final spatial saliency map S s can be obtained as: 

S s = 

1 

n 

∑ 

f∈{ L,C b ,C r ,T } 
N(S f ) . (4)

where n denotes the number of features (n = 4) ; N ( · ) represents

the operation of normalization. We use Min-Max normalization as

shown below. 

N(S f ) = 

S f − min (S f ) 

max (S f ) − min (S f ) 
, (5)

where the functions max ( · ) and min ( · ) is used to find maximum

and minimum values in the saliency map S f , respectively. 

Here, we use optical flow to estimate a motion feature for video

sequences [60] . The motion saliency can be also treated as the

prior probability distribution about perceptual motion speed [57] .

An object with strong motion compared to the background would

be perceived as salient object for HVS. According to the study [57] ,

the prior probability distribution can be fitted by the function: 

p(v ) = a/ v b 1 , (6)

where a and b 1 are two positive constants and set as e −0 . 09 and

0.2, respectively; v denotes motion speed. The temporal saliency S t 
can be calculated by using its self-information as follows: 

S t = − log p(v ) = b 1 log v + b 2 . (7)

where b 1 and b 2 are set as 0.2 and 0.09, respectively; b 2 = − log a

is a constant. These parameters are set based on the study [61] ,

where these parameters are fitted by large-scale experimental data.

v denotes the relative motion between the object and background

[62] , which can be computed as: 

v i = 

∑ 

j � = i 

1 

σs 

√ 

2 π
e −d 2 

i j 
/ 2 σ 2 

s D 

v 
i j , (8)

where D 

v 
i j 

denotes the motion difference between blocks i and j . In

this work, we compute D 

v 
i j 

as follows. 

D 

v 
i j = 

√ 

(G 

x 
i 
− G 

x 
j 
) 2 + (G 

y 
i 
− G 

y 
j 
) 2 , (9)

where G 

x 
i 

and G 

x 
j 

represent horizontal motion vectors of image

patches i and j , respectively; G 

y 
i 

and G 

y 
j 

denote vertical motion

vectors of image patches i and j , respectively. Here, i and j index

represent image patch. For the spatial saliency map and temporal

saliency map, we resize these saliency maps into the same size of

original video frames for the final saliency prediction. 

2.3. Saliency probability estimation 

Compared with saliency detection of images, saliency detection

of video sequences is more complicated due to the additional di-

mension of motion existing in video sequences. An object might be

regarded as salient with high certainty if the object has high color

contrast relative to the background, while the certainty would de-

scend greatly if the object has smaller motion compared to other

objects in the same video sequence. In other words, an object

might be salient from the perspective of spatial features, while the

object might be non-salient from the perspective of temporal fea-

tures. Therefore, how to balance and integrate spatial and tempo-

ral saliency to compute the final spatiotemporal saliency of video

sequences is very challenging. We introduce an uncertainty mea-

sure as the weighting to combine these two types of saliency maps

based on Gestalt theory [54,55] . 

The visual acuity in the HVS decreases with increasing eccen-

tricity from the fovea [63] . The HVS is more sensitive to center-

surround difference from the patch with nearer distance compared
ith those from farther patches. Here, we use a Gaussian model

o simulate this mechanism to weight center-surround differences

or saliency detection, as shown in Eq. (1) . Therefore, feature dif-

erences from a nearer patch would get a larger weight during

aliency computation. The saliency value is proportional to the fea-

ure difference. For uncertainty estimation of spatial saliency, we

ompute the similarity between the saliency values of a pixel and

he saliency center based on the law of similarity in Gestalt theory.

ith larger similarity of an image pixel to the saliency center, the

ncertainty of this image pixel is smaller. 

The uncertainty of spatial saliency is estimated based on the

estalt theory of similarity, which states that elements with sim-

lar properties should be perceived as a group. The uncertainty of

emporal saliency is predicted based on the Gestalt theory of com-

on fate, which states that elements with similar motion should

e perceived as a group. We apply these two kinds of principles

o visual attention modeling as follows: an image pixel with sim-

lar properties to that of the saliency center tends to be a salient

ixel; an image pixel that has the same way of moving with that of

he saliency center tends to be a salient pixel. These properties are

onsistent with the statistics of an eye tracking database of video

equences built by Lee et al. [40] , which are used to obtain fit-

ing curves for the proposed model. These fitting curves are shown

n Fig. 4 (a) and (b). We can see that the probability of an image

ixel being looked at is proportional to the feature similarity and

nversely proportional to the motion difference. 

Here, the feature similarity of the current superpixel region de-

otes similarity degree of feature vectors of this current superpixel

egion and other superpixel regions. It is calculated by the differ-

nce between feature vectors of the current superpixel region and

ther superpixel regions. With larger feature differences between

he current superpixel region and other superpixel regions in the

nput image, the saliency value of this current superpixel region is

arger. 

In the proposed method, we first use simple linear iterative

lustering algorithm (SLIC) [64] to segment video frames into su-

erpixels. With spatial saliency results computed in Eq. (4) , the

aliency center represented by a superpixel region can be obtained

y: 

 = argmax 
p 

( 

1 

L (Q p ) 

∑ 

(r,l) ∈ Q p 
S r,l 

) 

, s.t. 1 < p < M , (10)

here S represents spatial saliency map computed in Section 2.2 ;

 p denotes the p th superpixel in the segmented video frame; S r,l 
s the saliency value at the location ( r, l ) in saliency map S cor-

esponding to location ( r, l ) in the superpixel Q p ; M denotes the

uperpixel number of the segmented video frame; L ( · ) is used

o count the pixel number within the superpixel Q p . We calcu-

ate the average saliency value of the region in S corresponding

o superpixel Q p . The resultant saliency center represents a super-

ixel region. We compute the similarity between different super-

ixel regions by color statistics. Here, the degree of similarity R p of

ach superpixel Q p compared to the saliency center Q c is calculated

y: 

 p = e (−H(Q p ,Q c )) , (11)

here H ( · ) is the function that computes the L 2 distance of the

istogram-based features between superpixels Q p and Q c . For H ( · ),

e use the histograms of color and luminance features for its sim-

licity and effectiveness in saliency prediction [16] . H ( · ) is defined

s: 

(Q p , Q c ) = 

√ 

K ∑ 

k =1 

((F Q p ) k − (F Q q ) k ) 
2 , (12)
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Fig. 4. (a) Likelihood of saliency as a function of similarity. The fitting function for this figure is given in Eq. (14) . Here, the saliency of an image pixel is defined as a 

probability of being looked at with the condition of feature similarity. (b) Likelihood of saliency as a function of common fate. The fitting function for this figure is given in 

Eq. (16) . Here, the saliency of an image pixel is defined as a probability of being looked at with the condition of motion difference. 
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here F Q p and F Q c are feature vectors of superpixels Q p and Q c 

ased on color/luminance histograms, respectively; k denotes the

 th dimension of feature vector; c represents the saliency center

alculated by Eq. (10) ; K denotes the dimension size of histogram

eature vector. We set each feature (R, G, B, and Luminance) with

0 bins, and thus, K is equal to 40. The contribution of the degree

f similarity to saliency prediction decreases when the image pixel

 (the distance is computed on pixel level) is far away from the

mage pixel n . Therefore, we use an exponential function to weight

he degree of similarity as below. 

 m 

= e −( 1 α ) g mn R m 

, (13) 

here R m 

denotes the degree of similarity of the pixel m to the

aliency center and m belongs to superpixel Q p ; the image pixel

 is the center of superpixel Q c ; g mn represents the Euclidean dis-

ance between image pixels m and n; α is a parameter and we

et α = 60 ; w m 

is the final the degree of similarity. We compute

tatistics on the likelihood of a pixel being salient as a function of

he degree of similarity w on the video dataset [40] , and the re-

ults are shown in Fig. 4 (a). As shown in this figure, we can see

hat the probability of an image pixel being salient is proportional

o the similarity between the image pixel and the saliency center.

his relationship can be summarised by using a fitting function as

ollows: 

 (s | w ) = 1 − exp 

[ 
−
(

w 

α1 

)α2 
] 

, (14) 

here P ( s | w ) denotes the probability of an image pixel being

alient given its degree of similarity w; α1 and α2 are fitting

arameters fitted as α1 = 0 . 3062 and α2 = 1 . 2930 , respectively,

ased on the video database [40] . The fitting curve is shown in

ig. 4 (a). 

We estimate the uncertainty for temporal saliency by the

estalt theory of common fate, which states that an image pixel

ith more similar motion features to that of the saliency center

ould be more likely to be salient. We represent the motion fea-

ure of the saliency center as ( V xc , V yc ) and compute the motion

ifference z m 

between motion vectors of any image pixel m and

aliency center in a video frame as follows: 

 m 

= 

√ 

(V xc − V x m ) 
2 + (V yc − V y m ) 

2 , (15) 

t  
here (V x m , V y m ) denotes the motion feature of the image pixel m

n the video frame. 

To figure out the relationship between the probability of an

mage pixel being salient and the motion difference, we compute

tatistics on the probability as a function of motion difference z m 

,

nd results are shown in Fig. 4 (b). From this figure, we can see that

he probability of an image pixel being salient is inversely propor-

ional to the motion difference between the image pixel and the

aliency center. This relationship could be summarised by an em-

irical function as: 

 (s | z) = exp 

[
−
(

z 

β1 

)β2 

]
, (16) 

here z denotes motion difference; P ( s | z ) denotes the probability

f an image pixel being salient with its motion difference z; β1 

nd β2 are fitting parameters and found to be β1 = 6 . 6528 and

2 = 2 . 9547 , respectively, based on the video database [40] . The

tting curve is shown in Fig. 4 (b). 

.4. Uncertainty estimation 

Based on the probability of saliency calculated in Section 2.3 ,

e estimate the uncertainty for spatial and temporal saliency. The

ncertainty of spatial saliency is quantified by the entropy of the

ikelihood: 

 

s = E(P (s | w )) . (17) 

here E ( P ) denotes the entropy function computed as: −P log 2 P −
(1 − P ) log 2 (1 − P ) . Similar with Eq. (17) , we formulate the uncer-

ainty of temporal saliency as: 

 

t = E(P (s | z)) . (18) 

.5. Spatiotemporal saliency estimation 

Since larger uncertainty should be given lower weight in the

nal saliency prediction, we let the weight be inversely propor-

ional to uncertainty. Thus, the weight given to spatial saliency is

 

t , while the weight given to temporal saliency is U 

s . The spa-

iotemporal saliency map of each video frame can be estimated by
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Fig. 5. Saliency map samples. Column 1–4: original video frames, spatial saliency maps, temporal saliency maps, and spatiotemporal saliency maps. 
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combining spatial and temporal saliency with uncertainty weight-

ing as follows. 

S = 

U 

t S s + U 

s S t 

U 

s + U 

t 
. (19)

From Eq. (19) , we can see that the corresponding weights of

spatial saliency map S s and temporal saliency map S t are spa-

tiotemporally adaptive, which are different from linear or fixed

weight to fuse spatial and temporal saliency maps [41,65] . As

shown in Fig. 5 , the fused spatiotemporal saliency map from the

proposed method predicts more accurate saliency locations than

spatial/temporal saliency map. 

3. Experimental evaluation 

3.1. Evaluation methodology 

We perform extensive experiments on FBMS [66] , DAVIS [67] ,

and ViSal [46] . FBMS is a publicly available salient object database,

containing 59 video sequences (30 test video sequences). DAVIS

contains 3455 video frames (50 video sequences) with common

video saliency detection challenges such as fast-motion, occlusions,

no-linear deformation and motion blur. ViSal database includes

17 challenging video sequences with highly cluttered background,

multiple objects with various motion patterns, complex color dis-

tributions and camera motion. These video sequences range from

30 to 100 frames, and all these frames are manually labelled as

binary ground truth maps. 

In this experiment, three kinds of commonly used evaluation

criteria are used: Precision-Recall (PR) curve, F -measure, and mean

absolute error (MAE) [49] . PR curve, determined by precision and

recall, is widely used to evaluate the performance of saliency pre-

diction models. We can sort the salient values in the saliency map

as a list from the largest value to the smallest value, and use val-

ues from the first to the last in the list as thresholds to classify im-

age pixels in the saliency map into salient pixels and non-salient

pixels. Precision is the percentage of correctly detected image pix-

els to detected image pixels by a saliency detection model, while

recall is the percentage of correctly detected image pixels to the

ground-truth salient image pixels. Specifically, Precision and Recall

are defined as: 

P recision = 

T P 

T P + F P 
, (20)

Recall = 

T P 

T P + F N 

. (21)

where TP, FP, TN, and FN represent the number of correctly de-

tected salient pixels, falsely detected salient pixels, correctly de-

tected non-salient pixels, and falsely detected non-salient pixels.

T P + F P and T P + T N represent the number of being predicted to

be salient pixels and true salient pixels. F-measure is a compre-

hensive consideration of precision and recall: 

F − measure = 

(1 + β2 ) × P recision × Recall 

β2 × P recision + Recall 
(22)
m  
here we set β2 = 0 . 3 as suggested in [49] . Each PR pair corre-

ponds to an F-measure. Therefore, using different thresholds from

 to 255 for a saliency map will result in a series of F-measure

alues. 

MAE is the average per-pixel difference between saliency map

 and ground truth map G : 

AE = 

1 

mn 

m ∑ 

i =1 

n ∑ 

j=1 

| S i j − G i j | (23)

here saliency map S and ground truth map G are normalized to

0, 1]. m and n represent the number of row and column for the

aliency map S , respectively. 

.2. Comparison experiments 

.2.1. Visual comparison 

We compare the proposed model against the state-of-the-art

tudies including RWRV [41] , CE [65] , Seo [68] , Fang [56] , SGSP

38] , LGGR [46] , DeepGaze II [47] , and ICF [47] . The first six are tra-

itional models for saliency detection, while the last two are deep

earning based saliency detection models. In Figs. 6–8 , we provide

ome visual samples of saliency results on FBMS, DAVIS, and ViSal

o evaluate the performance of the proposed model. As can be seen

rom these figures, it is obvious that the saliency maps from exist-

ng models have many false saliency detection results, and some

ackground pixels are falsely detected as salient by these models. 

In Fig. 6 , we can see that CE would detect some background

egions as salient due to the failure of motion feature extraction.

s shown by the fourth and seventh rows of Fig. 6 , RWRV, Seo,

nd Fang would also wrongly detect some background regions with

ich texture information as salient due to their unreasonable com-

ination methods of spatial and temporal saliency. SGSP extracts

olor and motion information as features for saliency prediction

nd ignore other important information, such as texture and lumi-

ance. Therefore, SGSP cannot suppress residual saliency in back-

round region, as shown in the last two rows of Fig. 6 . LGGR de-

ects salient regions by considering local and global saliency cues.

GGR combines these two terms by simple linear operation, which

s not adaptive. DeepGaze II and ICF only extract static features and

gnore motion feature. In this work, we compute spatiotemporal

aliency by fusing spatial and temporal saliency with uncertainty

eighting estimated by the two laws of similarity and common

ate in Gestalt theory. The proposed fusion method by uncertainty

s adaptive, and thus, it can obtain better performance of saliency

etection over other existing ones on three public databases. 

Fig. 7 shows some visual samples from different video saliency

etection models on DAVIS. From the first, second and fifth rows

n this figure, we can observe that RWRV, Seo, and Fang wrongly

etect some background regions (wall and building) as salient with

heir unreasonable combination of spatial and temporal saliency.

ithout considering motion features, CE cannot retain the bound-

ries of salient objects in video sequences. As indicated previously,

GSP only uses color and motion information for saliency measure-

ent and would ignore other important information. Therefore,
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Fig. 6. Visual comparisons of output saliency results generated by different video saliency detection models on FBMS database. First column to the final column: original 

video frames, the ground truth maps, saliency maps from RWRV [41] , CE [65] , Seo [68] , Fang [56] , SGSP [38] , LGGR [46] , DeepGaze II [47] , ICF [47] and the proposed method. 

Fig. 7. Visual comparisons of output saliency results generated by different video saliency detection models on DAVIS database. First column to the final column: original 

images, the ground truth maps, saliency maps from RWRV [41] , CE [65] , Seo [68] , Fang [56] , SGSP [38] , LGGR [46] , DeepGaze [47] and ICF [47] and the proposed method. 

Fig. 8. Visual comparisons of output saliency results generated by different video saliency detection models on Visal database. First column to the final column: original 

video frames, the ground truth maps, saliency maps from RWRV [41] , CE [65] , Seo [68] , Fang [56] , SGSP [38] , LGGR [46] , DeepGaze II [47] , ICF [47] and the proposed method. 
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Fig. 9. Experimental results by different saliency detection methods on FBMS [66] ( top ), DAVIS [67] ( mid ), and ViSal [46] ( bottom ): (a) Precision-Recall curves; (b) F- 

measure; (c) average MAE. 
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SGSP cannot suppress residual saliency in background regions, as

shown in the fifth and sixth rows of Fig. 7 . LGGR combines local

and global saliency cues linearly for saliency region detection. As

shown in the third and fifth rows of Fig. 7 , LGGR cannot accurately

detect salient regions. DeepGaze II and ICF only extract static

features and ignore motion feature. Compared with these existing

saliency detection models, the proposed model can detect more

accurate saliency results, as shown by saliency results in the last

column of Fig. 7 . These experimental results also demonstrate that

the uncertainty weighting algorithm based on Gestalt theory can

be used to highlight saliency of foreground regions and suppress

saliency of background regions by fusing spatial and temporal

saliency results. Some more comparison samples on Visal are

given in Fig. 8 . From this figure, we can also see the superiority of

the proposed model over other existing saliency detection models. 

3.2.2. Quantitative comparison 

We provide quantitative results in Fig. 9 , where PR curve, F-

measure, and MAE [49] values of compared saliency detection

models are provided. In this figure, PR curve, F-measure, and MAE

values are all averaged over 30 test video sequences in FBMS,

50 video sequences in DAVIS, and 17 video sequences in ViSal.

From these experimental results, it can be seen that the proposed
ethod consistently outperforms other existing methods across

ifferent metrics. Please note that the computational complexity

f the proposed video saliency detection method is higher than

ome existing related methods, since we have to extract the mo-

ion features by optical flow in the proposed method. The proposed

ethod cannot run in real-time for common video sequences. 

.2.3. Fusion by uncertainty weighting 

In the section, we conducted a comparison experiment on spa-

ial, temporal, and spatiotemporal saliency with quantitative re-

ults, as shown in Fig. 10 . From these experimental results, we can

ee that temporal saliency can obtain better performance than spa-

ial saliency in most cases, while the spatiotemporal saliency con-

istently outperforms spatial and temporal saliency across different

etrics. This demonstrates that the adaptive uncertainty weighting

y the two laws of similarity and common fate in Gestalt theory

an effectively fuse spatial and temporal saliency for spatiotempo-

al saliency prediction. 

.3. Parameter choice 

In this experiment, we conducted a comparison experiment for

erformance evaluation with the choice of various parameters used
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Fig. 10. Quantitative results of spatial, temporal and spatiotemporal saliency maps on FBMS ( top ), DAVIS ( mid ), and ViSal ( bottom ). (a) Precision-Recall curves; (b) F- 

measure; (c) average MAE. 

Table 1 

Experimental results on FBMS, DAVIS, and ViSal databases in terms of average MAE. 

Databases α\ σ s 1 3 5 7 10 

FBMS 40 0.1703 0.1590 0.1450 0.1666 0.1787 

50 0.1742 0.1460 0.1343 0.1538 0.1731 

60 0.1561 0.1332 0.1220 0.1429 0.1698 

70 0.1595 0.1403 0.1489 0.1530 0.1601 

80 0.1756 0.1509 0.1530 0.1688 0.1704 

DAVIS 40 0.1340 0.1276 0.0823 0.1153 0.1200 

50 0.1267 0.1154 0.0851 0.1089 0.1061 

60 0.1123 0.0950 0.0724 0.0908 0.1088 

70 0.1259 0.1062 0.0820 0.1040 0.1163 

80 0.1403 0.1284 0.1054 0.1209 0.1365 

ViSal 40 0.1033 0.0850 0.0758 0.0899 0.0958 

50 0.0947 0.0844 0.0750 0.0763 0.0978 

60 0.0921 0.0676 0.0524 0.0690 0.0864 

70 0.1046 0.0799 0.0574 0.0764 0.0960 

80 0.1150 0.0973 0.0761 0.0942 0.1084 

i  

e  

σ  

T  

Table 2 

Experimental results on FBMS, DAVIS, and ViSal databases in terms of average F- 

measure. 

Databases α\ σ s 1 3 5 7 10 

FBMS 40 0.6031 0.6058 0.6150 0.6168 0.5920 

50 0.6105 0.6187 0.6238 0.6120 0.6066 

60 0.6150 0.6208 0.6398 0.6252 0.6087 

70 0.6079 0.6155 0.6299 0.6174 0.6068 

80 0.5984 0.6001 0.6148 0.6077 0.5938 

DAVIS 40 0.6030 0.6160 0.6274 0.6108 0.6166 

50 0.6003 0.6246 0.6322 0.6284 0.6148 

60 0.6257 0.6329 0.6400 0.6309 0.6244 

70 0.6162 0.6351 0.6378 0.6252 0.6177 

80 0.6057 0.6208 0.6280 0.6154 0.6040 

ViSal 40 0.7063 0.7138 0.7248 0.7222 0.7088 

50 0.7060 0.7299 0.7330 0.7290 0.7154 

60 0.7155 0.7284 0.7441 0.7366 0.7278 

70 0.7086 0.7168 0.7405 0.7280 0.7100 

80 0.7041 0.7073 0.7244 0.7156 0.7079 

t  

a  

r

n the proposed video saliency detection model. The comparison

xperiment is conducted by considering two parameters including

s in Eq. (1) and α in Eq. (13) . Experimental results are shown in

ables 1 and 2 with different σ s and α on three databases. From
hese tables, we can observe that the proposed method with σs = 5

nd α = 60 can obtain the best performance among different pa-

ameter settings. 
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The computation cost of the proposed method is much higher

than some existing methods due to the motion estimation process-

ing (optical flow algorithm) involved. The most time-consuming

part is the motion feature extraction by optical flow in the pro-

posed model. We will further investigate to reduce the computa-

tional complexity. 

4. Conclusion 

In this work, we introduce a novel framework of video saliency

detection based on spatiotemporal cues and Gestalt theory. For

spatial saliency prediction, we extract spatial features including lu-

minance, color, and texture features to compute the feature con-

trast. For temporal saliency prediction, we extract motion features

calculated by optical flow. The spatiotemporal saliency map is cal-

culated by fusing spatial and temporal saliency with uncertainty

weighting across modalities estimated by the two laws of similar-

ity and common fate in Gestalt theory. Experimental results show

the superiority of the proposed video saliency detection model

over other existing ones on three public databases. 

In the future, we will improve our algorithm by extracting high-

level features based on artificial neural networks. Currently, our

algorithm predicts spatiotemporal saliency by extracting low-level

features in video sequences. However, it is known that saliency is

influenced by high-level features from top-down knowledge. We

can extract low-level and high-level features (such as semantic ob-

ject information like human) simultaneously to design a more ef-

fective video saliency detection model in future. 
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